YayBlogger.com
BLOGGER TEMPLATES

Wednesday, May 30, 2012

gorgeous converse

today my inspiration is "fashion ala hollywood star".. hahaha *okeberlebihan
they only wear a leather jacket, t-shirt and converse shoes...
cool, yeahh I guess it cool :)
after that I really want to have some converse like this.. check itout




Monday, May 28, 2012

speechless



Wooow surprise.. make me shock
Dian Sastro with Robert Pattinson at Festival Film Cannes ke 65 di Perancis
oh my God How lucky girl you are mba Dian.. really really amazing
I am so damn jealous about it.. mau mauuu sma culen :(

and Dian Sastro you're gorgeous wearing this dress.. :d
congratsss yaa mbaaaaaaaaa


Sunday, May 27, 2012

Superman my fav hero's

Finnaly I found youuh my hero :*
you're sooo BIG and handsome.. hahaha I love you soo muchhhhh, Superman :d





missing


I get up every morning
and..
I go to bed every night,
with this feeling..
"that something is missing"
but,
I don't know what
and I don't know why

*listenmymind

Tuesday, May 22, 2012

old friend :(

Night everyone I wanna say something... some day when I open my old account on facebook, I see my photo with my junior high school friends. my old friends who never I meet again. I really miss all off you guys :(


Monday, May 21, 2012

my new jewellry stuff

hello everyones today I am going to les femesss jewelry wif my cupelmann.. and I buy some on there. 
how awesome.. 





Sunday, May 20, 2012

from my cupelman hero's

what do you think If I wear jersey from manchestercity ? sexy ? cool ? or ?  hahahaa please deh ya 




 and, here my superman ring is soooooo Damn coooooooooolllllllll !!!!!

  



my painting with Ipad

I like painting sooooo much.. sederhana si tp berkualitas :p 
checkitouttttt. hihiiw


Thursday, May 17, 2012

perjalanan dari mesin hitung



CHARLES BABBAGE 1792-1871 


            Charles Babbage adalah seorang penemu yang berasal dari Negara Inggris, ia berhasil menyelesaikan prinsip-prinsip pemakaian umum digital seabad penuh sebelum perkembangan besar-besaran mesin hitung elektronik terjadi. Mesin yang dirancangnya diberi nama “Mesin Analitis” yang pada intinya mampu melaksanakan apa saja yang bisa dilakukan kalkulator modern tetapi tidak sama cepatnya karena tidak bertenaga listrik. Sayangnya, berhubung teknologi abad ke-19 belumlah cukup maju karena Babbage belum sanggup merampung kontruksi mesin analitis itu, selain memerlukan banyak waktu dan biaya yang besar. Setelah beliau wafat, gagasannya yang begitu cemerlang itupun nyaris terlupakan.
            Tahun 1973 tulisan-tulisan Babbage menjadi perhatian Howard H.Aiken, sarjana tamatan Harvard. Aiken yang juga sedang menyelesaikan rancangan mesin computer tergerak banyak oleh gagasan-gagasan Babbage. Bekerja sama dengan IBM Aiken sanggup membuat Mark I, computer pertama untuk segala keperluan. Tahun 1946 dua tahun setelah Mark I dioperasikan, kelompok insinyur dan penemu lain menyelesaikan ENIAC, mesin hitung elektronik pertama. Sejak saat itu, kemajuan teknologi computer berkembang dengan pesatnya. Karena mesin hitung mempunyai pengaruh yang begitu pesat di dunia dan akan menjadi lebih penting lagi dimasa-masa yang akan datang. Sumbangan pikiran Babbage terhadap perkembangan computer tidaklah lebih besar dari Aiken atau John Mauchly J.O. Eckert. Atas dasar itu paling sedikit ada tiga pendahulu Babbage (Blaise Pascal, Gottfried Leibniz, dan Joseph Marie jacquard) sudah membuat sumbangan yang setara dengan Babbage.
            Pascal, seorang matematikus, filosof, dan ilmuan Perancis menemukan mesin penjumlahan mekanis bahkan jauh di tahun 1642. Tahun 1671 Gottfired Wilhelm Von Leibniz, seorang filsof dan matematikus merancang mesin yang dapat menjumlah, mengurangi, mengalikan, dan membagi. Leibniz juga orang pertama yang menunjukaan arti penting “Sistem Binary” yaitu, system penjumlahan dengan dua digit yang dalam zaman modern ini secara luas digunakan dalam mesin computer.

Sumber: buku [Seratus Tokoh yang Paling Berpengaruh dalam Sejarah], Michael H. Hart, 1978

History Of Math



            Matematika yang berasal dari bahasa Yunani (mathematika) adalah studi besaran,struktur,ruang dan perubahan. Para matematikawan mencari berbagai pola merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku,aksioma-aksioma dan definisi yang bersesuaian. Melalui penggunaan penalaran logika dan abstraksi matematika berkembang dari pencacahan, perhitungan,pengukuran, dan pengkajian sistematis terhadap bangunan dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul didalam Matematika Yunani terutama di dalam karya Euklides, Elemen.
Matematika selalu berkembang , misalnya di Cina pada tahun 300 SM, di India pada tahun 100M, dan di Arab pada tahun 800M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat didalam laju penemuan matematika yang berlanjut hingga kini.
            Kini matematika digunakan di seluruh dunia sebagai alat penting diberbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu social seperti ekonomi dan psikologi. Matematika terapan cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang lainnya, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang mengarah pada pengembangan disiplin ilmu yang sepenuhnya baru , seperti statitiska dan teori permainan. Para matematikawan juga bergulat didalam matematika murni atau matematika untuk perkembangan itu sendiri, tanpa adanya penerapan didalam pikiran meskipun penerapan praktis yang menjadi latar belakang munculnya matematika murni ternyata seringkali ditemukan terkemudian.

Perjalanan dalam Menentukan Bilangan



Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulu kala digunakan sebagai simbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol, diantaranya :
·         Simbol bilangan bangsa Babilonia.
·         Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM.
·         Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno.
·         Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia.
·         Simbol bilangan bangsa Yunani Kuno.
·         Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini.
Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini.

v Perkembangan Teori Bilangan

ü  Teori Bilangan Pada suku Babilonia

Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan  lebih dari 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal.

ü Teori Bilangan Pada Suku Bangsa Mesir Kuno

Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khalifah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga “Lembaran Ahmes” berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.


ü Teori Bilangan Pada Suku Bangsa India

Sulba Sutras (kira-kira 800–500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik, menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan, memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat, mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Kira-kira abad ke-5 SM merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.
Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit. Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.
Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma. Awal dari algoritma dikerjakan oleh Euclid. Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi. Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.
Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.
ü Teori Bilangan Pada Masa Sejarah (Masehi)

Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963). Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.
Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya.

v Tokoh-Tokoh Teori Bilangan

Ø  Pythagoras (582-496 SM)

Pythagoras adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya. Dikenal sebagai “Bapak Bilangan”, dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM.
Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.
Ø  Jamshid Al-Kashi (1380 M)

Al-Kashi terlahir pada 1380 di Kashan, sebuah padang pasir di sebelah utara wilayah Iran Tengah. Selama hidupnya, al-Kashi telah menyumbangkan dan mewariskan sederet penemuan penting bagi astronomi dan matematika.
Pecahan desimal yang digunakan oleh orang-orang Cina pada zaman kuno selama berabad-abad, sebenarnya merupakan pecahan desimal yang diciptakan oleh al-Kashi. Pecahan desimal ini merupakan salah satu karya besarnya yang memudahkan untuk menghitung aritmatika yang dia bahas dalam karyanya yang berjudul “Kunci Aritmatika” yang diterbitkan pada awal abad ke-15 di Samarkand.
Ø  Abu Ali Hasan Ibnu Al-Haytam (965 M)

Abu Ali Hasan Ibnu Al-Haytam lahir Basrah Irak, yang oleh masyarakat Barat dikenal dengan nama Alhazen. Al-Haytam adalah orang pertama yang mengklasifikasikan semua bilangan sempurna yang genap, yaitu bilangan yang merupakan jumlah dari pembagi-pembagi sejatinya, seperti yang berbentuk 2k-1(2k-1) di mana 2k-1 adalah bilangan prima. Selanjutnya Al-Haytam membuktikan bahwa bila p adalah bilangan prima, 1+(p-1)! habis dibagi oleh p.
Ø  Pierre de Fermat

Fermat menuliskan bahwa “I have discovered a truly remarkable proof which this margin is to small to contain”. Fermat juga hampir selalu menulis catatan kecil sejak tahun 1603, manakala ia pertama kali mempelajari Arithmetica karya Diophantus. Ada kemungkinan Fermat menyadari bahwa apa yang ia sebut sebagai remarkable proof ternyata salah, karena semua teorema yang dia nyatakan biasanya dalam bentuk tantangan yang Fermat ajukan terhadap matematikawan lain. Meskipun kasus khusus untuk n = 3 dan n = 4 ia ajukan sebagai tantangan (dan Fermat mengetahui bukti untuk kasus ini) namun teorema umumnya tidak pernah ia sebut lagi. Pada kenyataannya karya matematika yang ditinggalkan oleh Fermat hanya satu buah pembuktian. Fermat membuktikan bahwa luas daerah segitiga siku- siku dengan sisi bilangan bulat tidak pernah merupakan bilangan kuadrat. Jelas hal ini mengatakan bahwa tidak ada segitiga siku-siku dengan sisi rasional yang mempunyai luas yang sama dengan suatu bujursangkar dengan sisi rasional. Dalam simbol, tidak terdapat bilangan bulat x, y, z dengan sehingga bilangan kuadrat. Dari sini mudah untuk mendeduksi kasus n = 4, Teorema Fermat. Penting untuk diamati bahwa dalam tahap ini yang tersisa dari pembuktian Fermat Last Theorem adalah membuktikan untuk kasus n bilangan prima ganjil. Jika terdapat bilangan bulat x, y, z dengan maka jika n = pq, .

v Kapankah angka nol ditemukan?

Zero = 0 = Empty = Kosong (Nol) Memang, kata dalam Bahasa Inggris ‘zero’ (nol) berasal dari bahasa Arab ‘sifr’, suatu terjemahan literal dari bahasa Sanskrit “shûnya” yang bermakna “kosong”. Runtutan keterkaitan bahasa dari masa ke masa: shûnya (Sanskrit) -> (Ancient Egypt/Babylonia) -> (Greek/Helenic) -> (Rome/Byzantium) – sifr (Arab) -> zero (English) -> nol; kosong (Indonesia) Wikipedia The word “zero” comes ultimately from the Arabic “sifr”, or “empty,” a literal translation of the Sanskrit “shûnya”. With its new use for the concept of zero, zephyr came to mean a light breeze – “an almost nothing” (Ifrah 2000; see References). The word zephyr survives with this meaning in English today. The Italian mathematician Fibonacci (c.1170-1250), who grew up in Arab North Africa and is credited with introducing the Arabic decimal system to Europe. Around the same time, the Arab mathematician al-Khwarizmi described the “Hindu number” system with positional notation and a zero symbol in his book Kitab al-jabr wa’l muqabalah. Nol asalnya dari India “shûnya” bukan cuma sebuah istilah, tapi juga konsep.
Sekitar tahun 300 SM orang babilonia telah memulai penggunaan dua buah baji miring, //, untuk menunjukkan sebuah tempat kosong, sebuah kolom kosong pada Abakus. Simbol ini memudahkan seseorang untuk menentukan letak sebuah simbol. Angka nol sangat berguna dan merupakan simbol yang menggambarkan sebuah tempat kosong dalam Abakus, sebuah kolom dengan batu-batu yang ditempatkan di dasar. Kegunaannya hanya untuk memastikan bahwa butiran-butiran tersebut berada di tempat yang tepat, angka nol tidak memiliki nilai numeric tersendiri.
Pada komputer nol ini dapat merusak sistem, karena nol diartikan tidak ada. Berapapun bilangan dikalikan dengan nol hasilnya tidak ada. Nah inilah yang membuat bingung dalam operasi perhitungan.
Perhatikan contoh ini :
0=0 ( nol sama dengan nol, benar)
0 x3=0 x 89 (nol sama-sama dikalikan dengan sebuah bilangan, karena juga akan bernilai nol)
(0 x 3)/0= (0 x 89)/0 (sebuah bilangan dibagi dengan bilangan yang sama, akan bernilai satu)
3=89 (???, hasil ini yang membuat bingung)
Walaupun demikian sebenarnya nol itu hebat, jika tidak ditemukan angka nol tulisan satu juta dalam bilangan romawi ditulis apa?? Bisa-bisa selembar kertas tidak sampai untuk hanya memberikan simbol satu juta itu. Bisa dibayangkan jika nol tidak ada. Banyak kekuatan yang terkandung dalam angka ini. Nol adalah perangkat paling penting dalam matematika. Namun berkat sifat matematis dan filosofis yang aneh pada angka nol, ia akan berbenturan dengan filsafat barat.
Angka nol berbenturan dengan salah satu prinsip utama filsafat barat, sebuah dictum yang akar-akarnya terhujam dalam filsafat angka Phythagoras dan nilai pentingnya tumbuh dari paradoks Zeno. seluruh cosmos Yunani didirikan di atas pilar: tak ada kekosongan.
Kosmos Yunani yang dis=ciptakan oleh Phytagoras, Aristoteles dan Ptolemeus masih lama bertahan setelah keruntuhan peradaban Yunani. Dalam kosmos ini tak ada ketiadaaan. Oleh karena itu, hampir sepanjang dua milinium orang-orang barat tak bersedia menerima angka nol. Konsekuensinya sungguh menakutkan. Ketiadaan angka nol menghambat perkembangan matematika, menghalangi inovasi sains dan yang lebih berbahaya, mengacaukan sistem penanggalan.

v Macam-macam bilangan

Bilangan Bulat adalah bilangan yang terdiri atas bilangan positif, bilangan nol, dan bilangan negatif.
Misal : ….-2,-1,0,1,2….
Bilangan asli adalah bilangan bulat positif yang diawali dari angka 1(satu) sampai tak terhingga.
Misal : 1,2,3….
Bilangan cacah adalah bilangan bulat positif yang diawali dari angka 0 (nol) sampai tak terhingga.
Misal : 0,1,2,3,….
Bilangan prima adalah bilangan yang tepat mempunyai dua faktor yaitu bilangan 1 (satu) dan bilangan itu sendiri.
Misal : 2,3,5,7,11,13,…..
(1 bukan bilangan prima, karena mempunyai satu faktor saja).
Bilangan komposit adalah bilangan yang bukan 0, bukan 1 dan bukan bilangan prima.
Misal ; 4,6,8,9,10,12,….
Bilangan rasional adalah bilangan yang dinyatakan sebagai suatu pembagian antara dua bilangan bulat (berbentuk bilangan a/b, dimana a dan b merupakan bilangan bulat).
Misal: 1/2 ,2/(3 ),3/4….
Bilangan irrasional adalah bilangan yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat.
Misal: π, √3 , log 7 dan sebagainya.
Bilangan riil adalah bilangan yang merupakan penggabungan dari bilangan rasional dan bilangan irrasional
Misal: 1/2 √(2 ),1/3 √5,1/4 π,2/3 log2 dan sebagainya.
Bilangan imajiner (bilangan khayal) adalah bilangan yang ditandai dengan i, bilangan imajiner i dinyatakan sebagai √(-1). Jadi, jika i = √(-1) maka i2= -1
Misal: √(-4)=?
√(-4)=√(4×(-1) )
= √4×√(-1)
= 2 × i
= 2i
Jadi, √(-4)=2i.
Bilangan kompleks adalah bilangan yang merupakan penggabungan dari bilangan riil dan bilangan imajiner.
Misal; π√(-1)= πi
Log √(-1)=logi

Tuesday, May 1, 2012

the widding

happy wedding cici Devina wit Polim.. hope you will be more happy together . 










 iaaam busy to handle the guest.... verry verry busy. hahahaa 





and before make up girl... sooooo long 


but iam really happy today, miyaaww tired make a high hellss awwwww